
Storage and Manipulation of Passwords
September 2009

Storage and Manipulation of Passwords:
A Developers Guide

Ben Tasker
IT Manager & Linux Specialist

Storage and Manipulation of Passwords
Page 2

Contents

Introduction 2

Storage 2

Plaintext 2

Hashed 3

Salted 4

Random
Salted

4

Credential
Verification

6

Server
Side

6

Client
Side

7

Final
Stage

7

Conclusion 8

References 8

S
to

ra
ge

Introduction

For many users, creating and entering passwords is an everyday
occurrence. On today’s internet, very few services will allow access without
some form of credential. Whether it’s internet banking or social networking,
the user is required to enter a username and a password.

Although passwords have a number of weaknesses when compared to
alternative methods (such as One Time Tokens), they continue to be the
most common form of authorisation. As a developer, it is highly likely that
you will need to process and store passwords at some point.

The aim of this whitepaper is to look at the strengths and weaknesses of the
various methods available. We will also look into the available methods of
processing supplied credentials to establish whether to permit the user
access to the system.

This paper is not intended to focus on any particular type of system, and the
main body of information provided here should apply to any system, whether
a web application or a local application. For convenience, we will assume
that your application data is stored in a CSV based database. In reality the
data can be stored using your preferred method

Storage

Although it would obviously be more secure not to store passwords, it is an
unfortunate necessity. Without storing some form of the password, how will
your application verify the password provided by a user upon login?

This section will examine the various methods of password storage
available to you.

Plaintext

This is the simplest form of password storage, your application simply writes
the entered password to the database. In order to verify a user’s credentials
upon login you simply retrieve the stored password from the database and
compare the two strings.

Clearly, it is very simple to write some code to both store and retrieve the
password. A simple CSV file could be as follows;

“Username”,”Password”,
“Ben”,”MyPassword1”,

However, this method should be avoided at all costs. User’s have a habit of
using the same password for multiple applications/services. If an attacker
can gain access to your database, the passwords are available to him with
no extra work. The attacker could achieve access to this data as a result of
a flaw in your application (such as SQL Injection) or the database could

Storage and Manipulation of Passwords
Page 3

P
as

sw
o

rd
 S

to
ra

g
e

potentially be stolen by someone in your organisation.

There have been numerous news stories [1] about users’ credentials being
compromised as a result of being stored in plaintext.

It is easily possible to store an ‘encrypted’ version of passwords, so
developers will need to have a very good reason to justify storing passwords
in plaintext form! Developers around the world are realising that storing
passwords in plaintext offers no tangible benefit, and is simply a symptom of
laziness.

Hashed

The simplest form of encryption is to generate a ‘hash’ or a checksum. This
is a cryptographic signature which is theoretically [2] unique to the original
string. Which hashing algorithm you use depends on how accurate you
need the hash to be (i.e. to reduce the number of possible collisions [2]).

Many people opt to use the MD5 algorithm, so using our previous example
our CSV file would look like this;

“Username”,”Password”,
“Ben”,”97274d5652cb9522ec0ed285b845b55f”,

As you can see the password is no longer so easy for an attacker to
retrieve. When the user attempts to log in, your application simply needs to
generate a MD5 checksum of the password provided and then compare it to
the sum stored by your application.

This method, whilst far better than plaintext, is however still quite easy for an
attacker to circumvent. A dedicated attacker will generate what’s known as
rainbow tables [3].

These tables contain hashes of dictionary words and commonly used
passwords. The attacker then utilises a program designed to compare the
hash(es) in your database to those stored in his rainbow tables.

So in the above example, if our attacker’s rainbow tables contain the hash
97274d5652cb9522ec0ed285b845b55f, he/she will be able to deduce that
our password is MyPassword1.

Note: It’s important to note that the rainbow tables only need to contain a
matching checksum. If there is a ‘hash collision’ the password does not
need to match the user’s password. For example if the string “123456”
generated the same hash as “MyPassword1” (it doesn’t), the attacker would
be able to log in by supplying “123456” as a password. It is for this reason
that some opt to use a more advanced algorithm such as SHA256 [4]

Using hashed passwords requires the attacker to invest more time and
energy into trying to retrieve the users’ passwords, without overtly
complicating your application. A dedicated attacker, however, will be able to
compromise all stored passwords by using his ‘rainbow tables’.

Storage and Manipulation of Passwords
Page 4

H
as

h
 S

al
ti

n
g

Salted

Salted hashes are one step up from hashed passwords. The method of
generating and verifying hashes differs in one slight way – we add a
character (a salt) to the password.

So although our user enters “MyPassword1” to identify himself, we add one
or more characters to the password before generating our hashes. So for
example, if we used “SALT” as our salt, we could transform the password
into either “SALTMyPassword1” or “MyPassword1SALT”. So utilising the
former, our CSV file would look like this;

“Username”,”Password”,
“Ben”,”24a4fafc673bda0acad134362e72f4cc”,

As you can see, although the password remains the same, the generated
hash is very different to that in our previous example. The salt used is
generally used throughout the application, so we would salt every user’s
password by adding “SALT” to the beginning of their password.

By salting our hashes, we have stopped an attacker from using generic
rainbow tables, he must now invest time in order to generate Rainbow
tables specific to our salt (Rainbow tables take a very long time to
generate).

The use of salted hashes makes it impossible for attackers to generate and
use one set of Rainbow tables to compromise multiple applications
(assuming the applications use different salts). Adding a salt adds very little
overhead in comparison to using plain hashes.

A dedicated attacker will take the time to generate Rainbow tables specific
to your application, but use of salts will deter opportunistic attackers.

Random Salted

This method is very similar to that described above, except that instead of
using a generic salt throughout the application, we generate a user specific
salt.

An example of an application utilising this method is our very own
BUGGER[5].

In order to use this method, we need to add an additional field to our table
(BUGGER in fact uses three!), so our CSV file would be as follows;

“Username”,”Password”,”Salt”,
“Ben”,”341d1b981be66881618a16dcea1858f8”,”BenSALT”,

Each user would be allocated a different salt, so if we add a second user the
CSV would look like this;

“Username”,”Password”,”Salt”,
“Ben”,”341d1b981be66881618a16dcea1858f8”,”BenSALT”,
“Bill”,”d55d02ce8ebe68be86d2febc0c2b114c “,”BillSALT”,

Storage and Manipulation of Passwords
Page 5

H
as

h
 S

al
ti

n
g

Although Bill has (very coincidentally) also opted to use “MyPassword1” as
his password, the stored hashes differ. This is because we used a different
string to salt each one.

Although an attacker could still use rainbow tables to try and compromise
our users’ credentials, he would need to generate a set of rainbow tables for
each user account. It also carries an additional benefit, had we been using a
per application salt, our CSV file would have looked like this;

“Username”,”Password”,”Salt”,
“Ben”,”341d1b981be66881618a16dcea1858f8”,
“Bill”,”341d1b981be66881618a16dcea1858f8”,

If either Bill or Ben were able to gain access to the database, they would be
able to tell that the other user’s password was identical to their own. If Ben
is an administrator and Bill is not, this could allow Bill to gain additional
privileges.

Using this method does carry a slightly higher processing overhead than the
methods we discussed earlier;

o When setting a password, your application must generate a unique
salt.

o Your application needs to retrieve the relevant salt from your
database every time the user is required to enter his password.

However, the additional work required to compromise users’ credentials will
deter all but the most dedicated of attackers.

Notes on Storage

Although it is possible to increase the difficulty of compromising all the
credentials stored by your application, an attacker only needs to
compromise a single user account to cause harm.

Utilising Random Salts will, however, help prevent the embarrassment of
having all stored credentials compromised. Some developers go so far as to
store ‘dummy’ credentials in the hope that an attacker may waste their time
decrypting a useless hash. Whether you feel this is worthwhile depends
largely on personal taste and the performance required from the application.

Storage and Manipulation of Passwords
Page 6

C
re

d
en

ti
al

 V
er

if
ic

at
io

n
Credential Verification

So, you’ve decided how you’re going to store your users’ details. But how do
you process the supplied credentials to check they match those you have
stored? This section is most relevant to web-based applications.

When talking about processing the credentials, we simply mean generating
a (salted) hash of the supplied password. At no point should your
application send the stored hash to the client!

Any authentication data passing between the server and the client (whether
a salt, plaintext password or a hash) must be encrypted. The easiest
method is to use a SSL connection, however, you should be aware that
submitted data could still be compromised using a Man In The Middle
(MITM) attack [6].

Server Side

The most convenient method, for you as a developer, is to use a server side
script to process the supplied credentials. This does, however, pose a
security risk in that it requires the client to send the entered password (as
opposed to a hash) to your server.

Processing credentials Server-side allows you to write this aspect of the
application in your preferred language, whether it be PHP, Perl or even C(+
+/#). It also means that you don’t need to reveal your salt to the client (and
thus a potential attacker).

Because the user’s password is sent in plaintext form (albeit within a SSL
session), a successful MITM attack would mean our attacker knows the
password itself. He could then utilise this password to attack other
applications/services that our unfortunate user uses.

So whilst your application may be a simple social networking platform, an
attacker could take advantage of your complacency to gain a user’s
password, and then proceed to steal that user’s identity on other sites. This
could include accessing the user’s e-mail and requesting a password
reminder for that user’s Internet Banking account!

Processing credentials server-side does carry an overhead, and could easily
reduce the number of simultaneous connections that your server can
support.

Storage and Manipulation of Passwords
Page 7

C
re

d
en

ti
al

 V
er

if
ic

at
io

n
Client Side

If you decide to process the credentials client side, you will probably use
Javascript.

You will need to send the relevant salt to the client for use in generating a
hash of the password submitted as part of logging in. The disadvantage of
this is that you have made it easily possible for an attacker to identify the
salt that you use (they simply need to attempt a log in!).

However, by generating the hash client side, a MITM attack will only allow
the attacker to view the submitted hash. If they do identify the hash, they will
be able to log into your application (by writing a simple app that sends the
hash in the same manner as your login form).

However, the compromised hash will only allow them to log into your
application. Unless the attacker identifies the salt and generates dedicated
Rainbow tables, the hash will not permit them to log into other
applications/services that the user may use.

Processing credentials client-side will also lessen the load on your server,
allowing it to support a greater number of simultaneous connections.

The Final Stage

Whether you’ve opted to process credentials client-side or server-side,
comparison of the generated hash against the known hash should always
take place server side.

In order to compare the two hashes, you obviously need to know the stored
hash. If you send this information to the client, it becomes very easy for an
attacker to compromise the hash (as simple as ‘Right Click --> View
Source’).

You simply need to create a function that checks whether the hashes are
identical, and then responds accordingly;

if [“$SUPPLIED_HASH” == “$STORED_HASH”]
then

Hashes Matched
Access_Permitted

else

Hashes don’t match
Access_Denied

fi

Once the user has been authorised, you need not generate the hash for
each request, use some form of token to identify that the session has been
authorised. This could be a cookie or even a variable in the request URI, but
ensure that the authorisation will automatically be revoked after a
reasonable period of time.

Storage and Manipulation of Passwords
Page 8

C
o

n
cl

u
si

o
n

Conclusion

As a result of our huge reliance on passwords, stolen credentials have
become a regularly traded commodity. Most users do not understand just
how severe the consequences of a breach could be, and find an easy
complacency because “what would they want with my e-mail anyway?”.

Many users still utilise the same password for multiple applications/services
and will probably always do so. As developers, it is our duty to ensure that
our applications protect these credentials. Many, many breaches are caused
by a developer’s incompetence and/or laziness.

There are numerous methods available to try and discourage attackers from
attempting to compromise the details of your users. Which of these are
most suited will obviously vary between applications, but it remains the
responsibility of the developer.

Over time, these development practices will become second nature to you.
The end result will be better applications and safer users.

References

[1] http://www.google.co.uk/search?q=Passwords+exposed+%2BPlaintext
[2] http://en.wikipedia.org/wiki/Collision_(computer_science)
[3] http://en.wikipedia.org/wiki/Rainbow_table
[4] http://en.wikipedia.org/wiki/Secure_Hash_Algorithm
[5] http://benscomputer.no-ip.org/BUGGER/Project_summary.shtml?USERNAME=&PROJ=4
[6] http://en.wikipedia.org/wiki/Man-in-the-middle_attack

http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://benscomputer.no-ip.org/BUGGER/Project_summary.shtml?USERNAME=&PROJ=4
http://en.wikipedia.org/wiki/Secure_Hash_Algorithm
http://en.wikipedia.org/wiki/Rainbow_table
http://en.wikipedia.org/wiki/Collision_(computer_science)
http://www.google.co.uk/search?q=Passwords+exposed+%2BPlaintext

Storage and Manipulation of Passwords
Page 9

Resources and Further Reading

 Basic Password Handling

 Create Effective Passwords

 Designing an Authentication System: a Dialogue in Four Scenes

For more free white papers visit

http://benscomputer.no-ip.org/Whitepapers/

© Copyright Ben Tasker 2010

http://benscomputer.no-ip.org

The Benscomputer.no-ip.org and
Screaming Eagle logo’s are
Copyright Ben Tasker and may not
be used or reproduced without
express written permission.

Other product, company or service
names/logos may be trade/service
marks or copyright to others.

Benscomputer.no-ip.org assumes
no responsibility regarding the
accuracy of the information
provided herein and such use of
information is at the recipient’s own
risk. Information herein may be
changed or updated without notice.
Benscomputer.no-ip.org may also
make improvements and/or
changes in the products and/or
programs described herein at any
time without notice.

Any programmatic code within this
document may be subject to
copyright and are provided with
absolutely NO WARRANTY either
express or implied.

This whitepaper has been provided free of charge by Benscomputer.no-ip.org.
You should not have been charged, or required to register to view this whitepaper.
If you were, please let us know;

http://Benscomputer.no-ip.org/Contact.html

http://benscomputer.no-ip.org/Whitepapers/
http://www.ibm.com/developerworks/library/s-pass.html
http://web.mit.edu/kerberos/www/dialogue.html
http://Benscomputer.no-ip.org/Contact.html
http://benscomputer.no-ip.org/
http://blog.dave.org.uk/2005/11/basic-password.html

